Building NFA from Regular Grammars- Examples

Example: Grammar A 0 → a A 1 A_0 \to aA_1 A 1 → b A 1 ∣ a ∣ b A 0 A_1 \to bA_1 \ \mid\ a \ \mid\ bA_0 We’ll use the standard construction: One NFA state per nonterminal ( A 0 , A 1 ) (A_0, A_1) plus a fresh final state F F . For each rule X → a Y X \to aY : add a transition X → a Y X \xrightarrow{a} Y . For each rule X → a X \to a (terminal only): add X → a F X \xrightarrow{a} F . Start state is the start nonterminal ( A 0 A_0 ). Accepting states: { F } \{F\} (no ε \varepsilon -rules here, so neither A 0 A_0 nor A 1 A_1 is accepting). NFA N = ( Q , Σ , δ , q 0 , F ) N = (Q,\Sigma,\delta,q_0,F) States Q = { A 0 , A 1 , F } Q = \{A_0, A_1, F\} Alphabet Σ = { a , b } \Sigma = \{a,b\} Start q 0 = A 0 q_0 = A_0 Accepting F = { F } Transitions δ \delta : From A 0 A_0 : on a → { A 1 } \{A_1\} (from A 0 → a A 1 A_0 \to aA_1 ) on b → ∅ \varnothing From A 1 A_1 ...