Designing Context-Free Grammers

Designing a Context-Free Grammar (CFG) is really about thinking recursively and breaking a language into smaller, replaceable parts.

Here’s a step-by-step method explaining how to design CFGs.


1. Understand the Structure of the Language

  • Identify patterns in the strings you want to generate.

  • Look for recursion or nesting (these are strong hints that the language is context-free).

  • Ask: “What must always match or balance?”

Example 1:
Balanced a’s and b’s: {anbn  n0}\{ a^n b^n \ | \ n \ge 0 \}

  • Pattern: Same number of a’s followed by same number of b’s.

  • Recursive idea: If aabb is in the language, then so is aa…bb with more pairs.


2. Choose Nonterminals for Main Components

  • Start with S (start symbol).

  • If the language has subparts, create separate variables for them.

Example 2:
Arithmetic expressions might need:

V={E,T,F}V = \{ E, T, F \}

where E = expression, T = term, F = factor.


3. Write Productions that Capture the Pattern

  • Recursive productions handle repetition/nesting.

  • Base cases handle the simplest strings.

Example 1 grammar for anbna^n b^n:

SaSb  εS \rightarrow aSb \ | \ \varepsilon
  • Recursive case: a + (another S) + b

  • Base case: empty string.


4. Test Small Strings

  • Generate the shortest strings.

  • Check if all valid strings are generated.

  • Ensure no invalid strings appear.

Example:
For SaSb  εS \rightarrow aSb \ | \ \varepsilon

  • ε\varepsilon ✅

  • ab

  • aabb

  • No abb or aab appears ✅


5. Handle Choices and Branches

  • Use the “|” option in rules for alternatives.

Example 3: Palindromes over {a, b}:

SaSa  bSb  a  b  εS \rightarrow aSa \ | \ bSb \ | \ a \ | \ b \ | \ \varepsilon

This allows:

  • Recursion with matching ends.

  • Base cases of length 0 or 1.


6. Avoid Ambiguity if Needed

  • If parsing needs to be unique (like in programming languages), rewrite rules to enforce precedence and associativity.

Example (unambiguous arithmetic):

EE+T  TE \rightarrow E + T \ | \ T
TTF  FT \rightarrow T * F \ | \ F
F(E)  idF \rightarrow (E) \ | \ id

7. Think in Terms of “Generate, Not Recognize”

  • A CFG describes how to build strings, not just check them.

  • This “construction mindset” makes design easier.


Summary Table for Designing CFGs

StepWhat to DoExample
1    Identify structure        Equal a’s and b’s
2    Choose variables        S
3    Write recursion + base        S → aSb | ε
4    Test small cases        ε, ab, aabb
5    Add choices        S → aSa | bSb | a | b | ε
6    Resolve ambiguity if needed        Separate precedence levels
7    Check completeness        Generate all valid strings

Examples

1. Balanced Parentheses

Language:

L={all correctly balanced parentheses strings}L = \{ \text{all correctly balanced parentheses strings} \}

Alphabet: Σ={(,)}\Sigma = \{ (, ) \}

Step 1 — Structure

  • A balanced string can be empty.

  • If x is balanced, then (x) is balanced.

  • If x and y are balanced, then xy is balanced.

Step 2 — Variables
V={S}V = \{ S \}

Step 3 — Rules

S(S)S  εS \rightarrow (S)S \ | \ \varepsilon

Step 4 — Test

  • ε ✅

  • () ✅ (S → (S) S → (ε)

  • (()) ✅

  • ()() ✅


2. Palindromes

Language:

L={w{a,b}  w=wR}L = \{ w \in \{a, b\}^* \ | \ w = w^R \}

Step 1 — Structure

  • Palindrome can be empty or single letter.

  • If P is palindrome, then aPa and bPb are palindromes.

Step 2 — Variables
V={S}V = \{ S \}

Step 3 — Rules

SaSa  bSb  a  b  εS \rightarrow aSa \ | \ bSb \ | \ a \ | \ b \ | \ \varepsilon

Step 4 — Test

  • ε ✅

  • a ✅

  • b ✅

  • aba ✅

  • abba ✅


3. Arithmetic Expressions with Precedence

Language: expressions with + and * over identifiers id, where * has higher precedence.

Step 1 — Structure

  • Expression = terms joined by +

  • Term = factors joined by *

  • Factor = identifier or parenthesized expression.

Step 2 — Variables
V={E,T,F}V = \{ E, T, F \}

Step 3 — Rules

EE+T  TE \rightarrow E + T \ | \ T
TTF  FT \rightarrow T * F \ | \ F
F(E)  idF \rightarrow (E) \ | \ id

Step 4 — Test

  • id ✅

  • id + id ✅

  • id * id + id ✅

  • id + id * id ✅ (multiplication grouped first)


4. Equal Number of 0’s and 1’s (not necessarily grouped)

Language:

L={w{0,1}  #0(w)=#1(w)}L = \{ w \in \{0,1\}^* \ | \ \#0(w) = \#1(w) \}

Step 1 — Structure
This is a non-regular but context-free language.
A string can start with:

  • 0, end with 1, and middle balanced.

  • 1, end with 0, and middle balanced.

  • Two balanced strings concatenated.

Step 2 — Variables
V={S}V = \{ S \}

Step 3 — Rules

S0S1  1S0  SS  εS \rightarrow 0S1 \ | \ 1S0 \ | \ SS \ | \ \varepsilon

Step 4 — Test

  • ε ✅

  • 01 ✅

  • 10 ✅

  • 0110 ✅

  • 1100 ✅

  • 1010 ✅


5. Simple If-Else Statements

Language:

if <cond> then <stmt> else <stmt>\text{if <cond> then <stmt> else <stmt>}

and

if <cond> then <stmt>\text{if <cond> then <stmt>}

Step 1 — Structure
We must allow both forms and avoid ambiguity (dangling else problem).
We use matched and unmatched statements.

Step 2 — Variables
V={S,M,U}V = \{ S, M, U \}

  • MM= matched if-else

  • UU = unmatched if

Step 3 — Rules
Matched statements:

Mif C then M else M  otherM \rightarrow \text{if C then M else M} \ | \ \text{other}

Unmatched statements:

Uif C then S  if C then M else UU \rightarrow \text{if C then S} \ | \ \text{if C then M else U}

Statement:

SM  US \rightarrow M \ | \ U

Here "other" = any non-if statement, "C" = condition.

Step 4 — Test

  • if C then other ✅

  • if C then other else other ✅

  • if C then if C then other else other ✅ (correct nesting)

Comments

Popular posts from this blog

Theory Of Computation PCCST302 KTU Semester 3 BTech 2024 Scheme

Non deterministic Finite Automata NFA

Example DFAs University Questions