Formal Definition of a Finite Automaton (FA)

 

🤖 Formal Definition of a Finite Automaton (FA)

A Finite Automaton (FA) is a mathematical model of a system with finite memory. It processes a string of symbols and determines whether to accept or reject the string based on its transitions.

📘 Definition (from Linz and Hopcroft):

A Finite Automaton is a 5-tuple:

Where:

SymbolMeaning
QQ
                        A finite set of states
Σ\Sigma
                        A finite input alphabet (symbols the machine can read)
δ\delta
                        A transition function: δ:Q×ΣQ\delta: Q \times \Sigma \rightarrow Q
q0q_0                        The start state, where q0Qq_0 \in Q
FF
                        A set of accepting (final) states, where FQF \subseteq Q

🛠️ Intuitive Meaning:

  • The machine starts in initial state q0q_0.

  • It reads an input string symbol by symbol.

  • Based on each symbol and current state, it uses the transition function δ\delta to move to the next state.

  • After reading the entire string, if it ends in a state that is in FF(accepting), the string is accepted; otherwise, it is rejected.


🧪 Example:

Let M=(Q,Σ,δ,q0,F)M = (Q, \Sigma, \delta, q_0, F) be defined as:

  • Q={q0,q1}Q = \{q_0, q_1\}

  • Σ={0,1}\Sigma = \{0, 1\}

  • δ\delta defined as:

δ(q0,0)=q0,δ(q0,1)=q1,δ(q1,0)=q1,δ(q1,1)=q0\delta(q_0, 0) = q_0,\quad \delta(q_0, 1) = q_1,\quad \delta(q_1, 0) = q_1,\quad \delta(q_1, 1) = q_0
  • q0q_0 is the start state

  • F={q0}F = \{q_0\}

👉 This FA accepts all strings with even number of 1s.



Comments

Popular posts from this blog

Theory Of Computation PCCST302 KTU Semester 3 BTech 2024 Scheme

Non deterministic Finite Automata NFA

Example DFAs University Questions